
FIB	2.0:	Hierarchical,	Protocol	
Independent.	
	 	

Table	of	Contents	
Prerequisites	..	3	

Graphs	..	3	

Prefixes	...	3	

The	Data	Model	..	4	

Control	Plane	..	4	

ARP	Entries	...	4	

Routes	..	5	

Attached	Export	..	11	

Graph	Walks	...	13	

Data-Plane	..	14	

Tunnels	...	17	

MPLS	FIB	...	18	

Implementation	..	19	

Tunnels	...	19	

Fast	Convergence	...	20	

	

Figure	1:	ARP	data	model	...	4	
Figure	2:	Route	data	model	–	class	diagram	..	5	
Figure	3:	Route	object	diagram	..	7	
Figure	4:	Recursive	route	class	diagram.	..	9	
Figure	5:	Recursive	Routes	object	diagram	..	10	
Figure	6:	Attached	Export	Class	diagram.	...	12	
Figure	7:	Attached	Export	object	diagram	...	12	
Figure	8:	DPO	contributions	for	a	non-recursive	route	..	15	
Figure	9:	DPO	contribution	for	a	recursive	route.	..	16	
Figure	10:	DPO	Contributions	from	labelled	recursive	routes.	..	16	
Figure	11:	Tunnel	control	plane	object	diagram	..	18	
	 	

Prerequisites	
This	 section	 describes	 some	 prerequisite	 topics	 and	 nomenclature	 that	 are	 foundational	 to	
understanding	the	FIB	architecture.	

Graphs	
The	FIB	is	essentially	a	collection	of	related	graphs.	Terminology	from	graph	theory	is	often	used	in	
the	sections	that	follow.	From	Wikipedia:	

“...	a	graph	is	a	representation	of	a	set	of	objects	where	some	pairs	of	objects	are	connected	by	
links.	The	interconnected	objects	are	represented	by	mathematical	abstractions	called	vertices	
(also	called	nodes	or	points),	and	the	links	that	connect	some	pairs	of	vertices	are	called	edges	
(also	called	arcs	or	lines)	...	edges	may	be	directed	or	undirected.”	

In	 a	 directed	 graph	 the	 edges	 can	 only	 be	 traversed	 in	 one	 direction	 –	 from	 child	 to	 parent.	 The	
names	are	chosen	to	represent	the	many	to	one	relationship.	A	child	has	one	parent,	but	a	parent	
many	 children.	 	 In	 undirected	 graphs	 the	 edge	 traversal	 can	 be	 in	 either	 direction,	 but	 in	 FIB	 the	
parent	child	nomenclature	remains	to	represent	the	many	to	one	relationship.	Children	of	the	same	
parent	 are	 termed	 siblings.	 When	 the	 traversal	 is	 from	 child	 to	 parent	 it	 is	 considered	 to	 be	 a	
forward	 traversal,	 or	walk,	 and	 from	parent	 to	 the	many	 children	a	back	walk.	 Forward	walks	 are	
cheap	since	 they	start	 from	the	many	and	move	 toward	 the	 few.	Back	walks	are	expensive	as	 the	
start	from	the	few	and	visit	the	many.	

The	many	to	one	relationship	between	child	and	parent	means	that	the	lifetime	of	a	parent	object	
must	extend	to	 the	 lifetime	of	 its	children.	 If	 the	control	plane	removes	a	parent	object	before	 its	
children,	 then	 the	parent	must	 remain,	 in	 an	 ‘incomplete’	 state,	until	 the	 children	are	 themselves	
removed.	Likewise	 if	a	child	 is	created	before	 its	parent,	 the	parent	 is	completed	 in	an	 incomplete	
state.	 These	 incomplete	 objects	 are	 needed	 to	 maintain	 the	 graph	 dependencies.	 Without	 them	
when	the	parent	is	added	finding	the	affected	children	would	be	search	through	many	databases	for	
those	children.	To	extend	the	lifetime	of	parents	all	children	thereof	hold	a	‘lock’	on	the	parent.	This	
is	 a	 simple	 reference	 count.	 Children	 then	 follow	 the	 add-or-lock/unlock	 semantics	 for	 finding	 a	
parent,	as	opposed	to	a	malloc/free.	

Prefixes	
Some	nomenclature	used	to	describe	prefixes;	

• 1.1.1.1	–	this	is	an	address	since	it	has	no	associated	mask	
• 1.1.1.0/24	–	this	is	a	prefix.	
• 1.1.1.1/32	–	this	is	a	host	prefix	(the	mask	length	is	the	size	of	the	address).	

Prefix	A	is	more	specific	than	B	if	its	mask	length	is	longer,	and	less	specific	if	the	mask	is	shorter.	For	
example,	1.1.1.0/28	is	more	specific	than	1.1.1.0/24.		A	less	specific	prefix	that	overlaps	with	a	more	
specific	 is	 the	 ‘covering’	 prefix.	 For	 example,	 1.1.1.0/24	 is	 the	 covering	 prefix	 for	 1.1.1.0/28	 and	
1.1.1.0/28	is	termed	the	‘covered’	prefix.	A	covering	prefix	is	therefore	always	less	specific	than	its	
covered	prefixes.	

The	Data	Model	
The	FIB	data	model	comprises	two	parts;	the	control-plane	(CP)	and	the	data-plane	(DP).	The	CP	data	
model	 represents	 the	 data	 that	 is	 programmed	 into	 VPP	 by	 the	 upper	 layers.	 The	 DP	 model	
represents	how	VPP	derives	actions	to	be	performed	on	packets	are	they	are	switched.	

Control	Plane	
The	control	plane	follows	a	layered	data	representation.	This	document	describes	the	model	starting	
from	 the	 lowest	 layer.	 The	 description	 uses	 IPv4	 addresses	 and	 protocols,	 but	 all	 concepts	 apply	
equally	to	the	IPv6	equivalents.	The	diagrams	all	portray	the	CLI	command	to	install	the	information	
in	 VPP	 and	 an	 [approximation	 of]	 a	 UML	 diagram1	 of	 the	 data	 structures	 used	 to	 represent	 that	
information.	

ARP	Entries	

	

Figure	1:	ARP	data	model	

Figure	 1	 shows	 the	 data	model	 for	 an	 ARP	 entry.	 An	 ARP	 entry	 contains	 the	mapping	 between	 a	
peer,	identified	by	an	IPv4	address,	and	its	MAC	address	on	a	given	interface.		The	VRF	the	interface	
is	bound	to,	is	not	part	of	the	data.	VRFs	are	an	ingress	function	not	egress.	The	ARP	entry	describes	
how	to	send	traffic	to	a	peer,	which	is	an	egress	function.	

The	arp_entry_t	represents	the	control-plane	addition	of	the	ARP	entry.	The	ip_adjacency_t	contains	
the	data	derived	 from	the	arp_entry_t	 that	 is	need	to	 forward	packets	 to	 the	peer.	The	additional	
data	in	the	adjacency	are	the	rewrite	and	the	link_type.	The	link_type	is	a	description	of	the	protocol	
of	 the	packets	 that	will	be	 forwarded	with	 this	adjacency;	 this	can	be	 IPv4	or	MPLS.	The	 link_type	
maps	directly	 to	 the	ether-type	 in	 an	Ethernet	header,	 or	 the	protocol	 filed	 in	 a	GRE	header.	 The	
rewrite	is	a	byte	string	representation	of	the	header	that	will	be	prepended	to	the	packet	when	it	is	

																																																													
1	 The	 arrow	 indicates	 a	 ‘has-a’	 relationship.	 The	 object	 attached	 to	 the	 arrow	 head	 ‘has-a’	 instance	 of	 the	
other.	The	numbers	next	to	the	arrows	indicate	the	multiplicity,	i.e.	object	A	has	n	to	m	instances	of	object	B.	
The	 difference	 between	 a	 UML	 association	 and	 aggregation	 is	 not	 conveyed	 in	 any	 diagrams.	 To	 UML	
aficionados,	I	apologize.	Word	is	not	the	best	drawing	tool.	

sent	to	that	peer.	For	Ethernet	interfaces	this	would	be	the	src,dst	MAC	and	the	ether-type.	For	LISP	
tunnels,	the	IP	src,dst	pair	and	the	LISP	header.	

The	arp_entry_t	will	 install	a	 link_type=IPv4	when	the	entry	 is	created	and	a	 link_type=MPLS	when	
the	interface	is	MPLS	enabled.	Interfaces	must	be	explicitly	MPLS	enabled	for	security	reasons.	

So	that	adjacencies	can	be	shared	between	route,	adjacencies	are	stored	in	a	single	data-base,	the	
key	for	which	is	{interface,	next-hop,	link-type}.		

Routes	

	

Figure	2:	Route	data	model	–	class	diagram	

The	control	plane	will	 install	a	route	in	a	table	for	a	prefix	via	a	list	of	paths.	The	prime	function	of	
the	 FIB	 is	 to	 ‘resolve’	 that	 route.	 To	 resolve	 a	 route	 is	 to	 construct	 an	 object	 graph	 that	 fully	
describes	all	elements	of	the	route.	In	Figure	3	the	route	is	resolved	as	the	graph	is	complete	from	
fib_entry_t	to	ip_adjacency_t.	

In	 some	 routing	 models	 a	 VRF	 will	 consist	 of	 a	 set	 of	 tables	 for	 IPv4	 and	 IPv6,	 and	 unicast	 and	
multicast.	 In	 VPP	 there	 is	 no	 such	 grouping.	 Each	 table	 is	 distinct	 from	 each	 other.	 A	 table	 is	
indentified	by	its	numerical	ID.	The	ID	range	is	separate	for	each	address	family.	

A	table	is	comprised	of	two	route	data-bases;	forwarding	and	non-forwarding.	The	forwarding	data-
base	contains	routes	against	which	a	packet	will	perform	a	longest	prefix	match	(LPM)	in	the	data-
plane.	The	non-forwarding	DB	contains	all	the	routes	with	which	VPP	has	been	programmed	–	some	

of	these	routes	may	be	unresolved	for	reasons	that	prevent	their	 insertion	 into	the	forwarding	DB	
(see	section:	Adjacency	source	FIB	entries).		

The	route	data	is	decomposed	into	three	parts;	entry,	path-list	and	paths;	

• The	fib_entry_t,	which	contains	the	route’s	prefix,	is	representation	of	that	prefix’s	entry	in	the	
FIB	table.	

• The	 fib_path_t	 is	 a	 description	 of	 where	 to	 send	 the	 packets	 destined	 to	 the	 route’s	 prefix.	
There	are	several	types	of	path.	

o Attached	next-hop:	the	path	is	described	with	an	interface	and	a	next-hop.	The	next-hop	
is	in	the	same	sub-net	as	the	router’s	own	address	on	that	interface,	hence	the	peer	is	
considered	to	be	’attached’.	

o Attached:	 the	path	 is	described	only	by	an	 interface.	All	address	covered	by	the	prefix	
are	on	the	same	L2	segment	to	which	that	router’s	interface	is	attached.	This	means	it	is	
possible	 to	ARP	 for	 any	 address	 covered	by	 the	prefix	 –	which	 is	 usually	 not	 the	 case	
(hence	the	proxy	ARP	debacle	in	IOS).	An	attached	path	is	only	appropriate	for	a	point-
to-point	(P2P)	interface	where	ARP	is	not	required,	i.e.	a	GRE	tunnel.	

o Recursive:	The	path	is	described	only	via	the	next-hop	and	table-id.		
o De-aggregate:	The	path	is	described	only	via	the	special	all	zeros	address	and	a	table-id.	

This	implies	a	subsequent	lookup	in	the	table	should	be	performed.		
• The	fib_path_list_t	represents	the	list	of	paths	from	which	to	choose	one	when	forwarding.	The	

path-list	is	a	shared	object,	i.e.	it	is	the	parent	to	multiple	fib_entry_t	children.	In	order	to	share	
any	 object	 type	 it	 is	 necessary	 for	 a	 child	 to	 search	 for	 an	 existing	 object	 matching	 its	
requirements.	 For	 this	 there	 must	 be	 a	 data-base.	 The	 key	 to	 the	 path-list	 data-base	 is	 a	
combined	 description	 of	 all	 of	 the	 paths	 it	 contains2.	 	 Searching	 the	 path-list	 database	 is	
required	with	each	route	addition,	so	 it	 is	populated	only	with	path-lists	for	which	sharing	will	
bring	convergence	benefits	(see	Section:	Fast	Convergence).	

Figure	2	 shows	an	example	of	a	 route	with	 two	attached-next-hop	paths.	Each	of	 these	paths	will	
‘resolve’	by	finding	the	adjacency	that	matches	the	path’s	attributes,	which	are	the	same	as	the	key	
for	 the	 adjacency	 data-base3.	 The	 ‘forwarding	 information’	 (FI)	 is	 the	 set	 of	 adjacencies	 that	 are	
available	 for	 load-balancing	 the	 traffic	 in	 the	data-plane.	A	 path	 ‘contributes’	 an	 adjacency	 to	 the	
route’s	 forwarding	 information,	 the	 path-list	 contributes	 the	 full	 forwarding	 information	 for	 IP	
packets.	

Error!	 Reference	 source	 not	 found.	 shows	 the	 object	 instances	 and	 their	 relationships	 created	 in	
order	to	resolve	the	routes	also	shown.	The	graph	nature	of	these	relationships	is	evident;	children	
are	displayed	at	the	top	of	the	diagram,	their	parents	below	them.	Forward	walks	are	thus	from	top	
to	bottom,	back	walks	bottom	to	top.	The	diagram	shows	the	objects	that	are	shared,	the	path-list	
and	adjacency.	Sharing	objects	is	critical	to	fast	convergence	(see	section	Fast	Convergence).		

																																																													
2	Optimisations	
3	Note	it	is	valid	for	either	interface	to	be	bound	to	a	different	table	than	table	1.	

	

Figure	3:	Route	object	diagram	

FIB	sources	
There	are	various	entities	in	the	system	that	can	add	routes	to	the	FIB	tables.	Each	of	these	entities	
is	 termed	 a	 ‘source’.	When	 the	 same	 prefix	 is	 added	 by	 different	 sources	 the	 FIB	must	 arbitrate	
between	 them	 to	 determine	which	 source	will	 contribute	 the	 forwarding	 information.	 Since	 each	
source	 determines	 the	 forwarding	 information	 using	 different	 best	 path	 and	 loop	 prevention	
algorithms,	 it	 is	 not	 correct	 for	 the	 forwarding	 information	 of	 multiple	 sources	 to	 be	 combined.	
Instead	the	FIB	must	choose	to	use	the	forwarding	information	from	only	one	source.	This	choice	is	
based	on	a	static	priority	assignment4.	The	FIB	must	maintain	the	information	each	source	has	added	
so	 it	 can	 be	 restored	 should	 that	 source	 become	 the	 best	 source.	 VPP	 has	 two	 ‘control-plane’	
sources;	the	API	and	the	CLI	–	the	API	has	the	higher	priority.	Each	source’s	data	is	represented	by	a	
fib_entry_src_t	object	–	of	which	a	fib_entry_t	maintains	a	sorted	vector.	

A	prefix	is	‘connected’	when	it	is	applied	to	a	router’s	interface.	The	following	configuration:	

set interface address 192.168.1.1/24 GigE0

results	 in	 the	 addition	 of	 two	 FIB	 entries;	 192.168.1.0/24	 which	 is	 connected	 and	 attached,	 and	
192.168.1.1/32	which	 is	 connected	and	 local	 (a.k.a	 receive	or	 for-us).	Both	prefixes	are	 ‘interface’	
sourced.		The	interface	source	has	a	high	priority,	so	the	accidental	or	nefarious	addition	of	identical	
prefixes	does	not	prevent	the	router	from	correctly	forwarding.	Packets	matching	a	connected	prefix	
will	generate	an	ARP	request	for	the	packet’s	destination	address,	this	process	is	known	as	a	‘glean’.		

																																																													
4	The	engaged	reader	can	see	the	full	priority	list	in	vnet/vnet/fib/fib_entry.h.	

An	‘attached’	prefix	also	results	in	a	glean,	but	the	router	does	not	have	its	own	address	in	that	sub-
net.	 The	 following	 configuration	 will	 result	 in	 an	 attached	 route,	 which	 resolves	 via	 an	 attached	
path;	

ip route add table X 10.10.10.0/24 via gre0

as	mentioned	before,	these	are	only	appropriate	for	point-to-point	links.	An	attached-host	prefix	is	
covered	by	either	an	attached	prefix	 (note	that	connected	prefixes	are	also	attached).	 If	 table	X	 is	
not	 the	 table	 to	 which	 gre0	 is	 bound,	 then	 this	 is	 the	 case	 of	 an	 attached	 export	 (see	 section	
Attached	Export)	

Adjacency	source	FIB	entries	
Whenever	an	ARP	entry	is	created	it	will	source	a	fib_entry_t.	In	this	case	the	route	is	of	the	form:	

ip route add table X 10.0.0.1/32 via 10.0.0.1 GigEth0/0/0

It	 is	 a	 host	 prefix	 with	 a	 path	 whose	 next-hop	 address	 is	 the	 same.	 This	 route	 highlights	 the	
distinction	 between	 the	 route’s	 prefix	 –	 a	 description	 of	 the	 traffic	 to	match	 -	 	 and	 the	 path	 –	 a	
description	of	where	to	send	the	matched	traffic.	Table	X	is	the	same	table	to	which	the	interface	is	
bound.	FIB	entries	that	are	sourced	by	adjacencies	are	termed	adj-fibs.		The	priority	of	the	adjacency	
source	is	lower	than	the	API	source,	so	the	following	configuration:	

set interface address 192.168.1.1/24 GigE0

ip arp 192.168.1.2 GigE0 dead.dead.dead

ip route add 192.168.1.2 via 10.10.10.10 GigE1

will	 forward	 traffic	 for	 192.168.1.2	 via	 GigE1.	 That	 is	 the	 route	 added	 by	 the	 control	 plane	 is	
favoured	 over	 the	 adjacency	 discovered	 by	 ARP.	 The	 control	 plane,	 with	 its	 associated	
authentication,	is	considered	the	authoritative	source.	To	counter	the	nefarious	addition	of	adj-fibs,	
through	the	nefarious	 injection	of	adjacencies,	 the	FIB	 is	also	 required	 to	ensure	 that	only	adj-fibs	
whose	 less	 specific	 covering	prefix	 is	attached	are	 installed	 in	 forwarding.	This	 requires	 the	use	of	
'cover	 tracking',	where	a	 route	maintains	a	dependency	 relationship	with	 the	 route	 that	 is	 its	 less	
specific	 cover.	 When	 this	 cover	 changes	 (i.e.	 there	 is	 a	 new	 covering	 route)	 or	 the	 forwarding	
information	of	the	cover	 is	updated,	then	the	covered	route	 is	notified.	Adj-fibs	that	fail	 this	cover	
check	 are	 not	 installed	 in	 the	 fib_table_t’s	 forwarding	 table,	 there	 are	 only	 present	 in	 the	 non-
forwarding	table.	

Overlapping	 sub-nets	 are	 not	 supported,	 so	 no	 adj-fib	 has	 multiple	 paths.	 The	 control	 plane	 is	
expected	to	remove	a	prefix	configured	for	an	interface	before	the	interface	changes	VRF.	So	while	
the	following	configuration	is	accepted:	

set interface address 192.168.1.1/32 GigE0

ip arp 192.168.1.2 GigE0 dead.dead.dead

set interface ip table GigE0 2

it	does	not	result	in	the	desired	behaviour,	where	the	adj-fib	and	connecteds	are	moved	to	table	2.	

Recursive	Routes	
Figure	4	shows	the	data	structures	used	to	describe	a	recursive	route.	The	representation	is	almost	
identical	 to	attached	next-hop	paths.	The	difference	being	 that	 the	 fib_path_t	has	a	parent	 that	 is	
another	fib_entry_t,	termed	the	‘via-entry’.		

	

Figure	4:	Recursive	route	class	diagram.	

In	order	to	forward	traffic	to	64.10.128.0/20	the	FIB	must	first	determine	how	to	forward	traffic	to	
1.1.1.1/32.	This	is	recursive	resolution.	Recursive	resolution,	which	is	essentially	a	cache	of	the	data-
plane	result,	emulates	a	longest	prefix	match	for	the	'via-address'	1.1.1.1	in	the	‘via-table’	table	05.	

Recursive	resolution	(RR)	will	source	a	host-prefix	entry	in	the	via-table	for	the	via-address.	The	RR	
source	 is	a	 low	priority	source.	 In	the	unlikely6	event	that	the	RR	source	 is	the	best	source,	then	 it	
must	derive	forwarding	information	from	its	covering	prefix.	There	are	two	cases	to	consider:	

- The	 cover	 is	 connected7.	 The	 via-address	 is	 then	 an	 attached	 host	 and	 the	 RR	 source	 can	
resolve	directly	via	the	adjacency	with	the	key	{via-address,	interface-of-connected-cover}	

- The	cover	 is	not	connected8.	The	RR	source	can	directly	 inherit	the	forwarding	 information	
from	its	cover.	

																																																													
5	Note	it	is	only	possible	to	add	routes	via	an	address	(i.e.	a	/32	or	/128)	not	via	a	shorter	mask	prefix.	There	is	
no	use	case	for	the	latter	
6	For	iBGP	the	via-address	is	the	loopback	address	od	the	peer	PE,	for	eBGP	it	is	the	adj-fib	for	the	CE.	
7	As	is	the	case	for	eBGP	
8	As	is	the	case	for	iBGP	

This	dependency	on	the	covering	prefix	means	the	RR	source	will	track	its	cover.	The	covering	prefix	
will	‘change’	when;	

- A	more	specific	prefix	 is	 inserted.	For	 this	 reason	whenever	an	entry	 is	 inserted	 into	a	FIB	
table	its	cover	must	be	found	so	that	its	covered	dependents	can	be	informed.	

- The	existing	cover	is	removed.	The	covered	prefixes	must	form	a	new	relationship	with	the	
next	less	specific.	

The	cover	will	be	 ‘updated’	when	the	route	 for	 the	covering	prefix	 is	modified.	The	cover	 tracking	
mechanism	will	provide	the	RR	sourced	entry	with	a	notification	in	the	event	of	a	change	or	update	
of	the	cover,	and	the	source	can	take	the	necessary	action.	

The	RR	sourced	FIB	entry	becomes	 the	parent	of	 the	 fib_path_t	 and	will	 contribute	 its	 forwarding	
information	to	that	path,	so	that	the	child’s	FIB	entry	can	construct	its	own	forwarding	information.		

		

Figure	5:	Recursive	Routes	object	diagram	

Figure	5	shows	the	object	instances	created	to	represent	the	recursive	route	and	its	resolving	route	
also	shown.		

If	the	source	adding	recursive	routes	does	not	itself	perform	recursive	resolution9	then	it	is	possible	
that	 the	source	may	 inadvertently	programme	a	 recursion	 loop.	An	example	of	a	 recursion	 loop	 is	
the	following	configuration:	

ip route add 5.5.5.5/32 via 6.6.6.6

ip route add 6.6.6.6/32 via 7.7.7.7

ip route add 7.7.7.7/32 via 5.5.5.5

This	shows	a	loop	over	three	levels,	but	any	number	is	possible.	FIB	will	detect	recursion	loops	by	
forward	 walking	 the	 graph	 when	 a	 fib_entry_t	 forms	 a	 child-parent	 relationship	 with	 a	
fib_path_list_t.	 The	walk	 checks	 to	 see	 if	 the	 same	 object	 instances	 are	 encountered.	When	 a	
recursion	loop	is	formed	the	control	plane10	graph	becomes	cyclic,	thus	allowing	the	child-parent	
dependencies	to	form.	This	is	necessary	so	that	when	the	loop	breaks,	the	affected	children	and	
be	updated.	

Output	labels	
A	route	may	have	associated	out	MPLS	labels11.	These	are	labels	that	are	expected	to	be	imposed	on	
a	 packet	 as	 it	 is	 forwarded.	 It	 is	 important	 to	 note	 that	 an	MPLS	 label	 is	 per-route	 and	 per-path,	
therefore,	 even	 though	 routes	 share	 paths	 the	 do	 not	 necessarily	 have	 the	 same	 label	 for	 that	
path12.	 A	 label	 is	 therefore	 uniquely	 associated	 to	 a	 fib_entry_t	 and	 associated	 with	 one	 of	 the	
fib_path_t	to	which	it	forwards.	

MPLS	labels	are	modelled	via	the	generic	concept	of	a	‘path-extension’.	A	fib_entry_t	therefore	has	a	
vector	of	zero	to	many	fib_path_ext_t	objects	to	represent	the	labels	with	which	it	is	configured.	

Attached	Export	
Extranets	make	prefixes	in	VRF	A	also	reachable	from	VRF	B.	VRF	A	is	the	export	VRF,	B	the	import.	
Consider	this	route	in	the	export	VRF;	

ip route add table 2 1.1.1.0/24 via 10.10.10.0 Gige0/0/0

there	are	two	ways	one	might	consider	representing	this	route	in	the	import	VRF:	

1) ip route add table 3 1.1.1.0/24 via 10.10.10.0 Gige0/0/0
2) ip route add table 3 1.1.1.0/24 via lookup-in-table 2

where	option	2)	is	an	example	of	a	de-aggregate	route	where	a	second	lookup	is	performed	in	table	
2,	 the	 export	 VRF.	 Option	 2)	 is	 clearly	 less	 efficient,	 since	 the	 cost	 of	 the	 second	 lookup	 is	 high.	
Option	1)	is	therefore	preferred.	However,	connected	and	attached	prefixes,	and	specifically	the	adj-
fibs	 that	 they	 cover,	 require	 special	 attention.	 The	 control	 plane	 is	 aware	 of	 the	 connected	 and	
attached	prefixes	that	are	required	to	be	exported,	but	 it	 is	unaware	of	the	adj-fibs.	 It	 is	therefore	
the	responsibility	of	FIB	to	ensure	that	whenever	an	attached	prefix	is	exported,	so	are	the	adj-fibs	
and	 local	 prefixes	 that	 it	 covers,	 and	 only	 the	 adj-fibs	 and	 locals,	 not	 any	 covered	more	 specific	
(sourced	e.g.	by	API).	The	imported	FIB	entries	are	sourced	as	‘attached-export’,	this	is	a	low	priority	

																																																													
9	If	that	source	is	relying	on	FIB	to	perform	recursive	resolution,	then	there	is	no	reason	it	should	do	so	itself.	
10	The	derived	data-plane	graph	MUST	never	be	cyclic.	
11	Advertised,	e.g.	by	LDP,	SR	or	BGP.	
12	The	only	case	where	the	labels	will	be	the	same	is	BGP	VPNv4	label	allocation	per-VRF.	

source,	 so	 if	 those	 prefixes	 already	 exist	 in	 the	 import	 VRF,	 sourced	 by	 the	 API,	 then	 they	 will	
continue	to	forward	with	that	information.	

Figure	6	shows	the	data	structures	used	to	perform	attached	export.	

- fib_import_t.	A	representation	of	the	need	to	import	covered	prefixes.	An	instance	is	
associated	with	the	FIB	entry	in	the	import	VRF.	The	need	to	import	prefixes	is	recognised	
when	an	attached	route	is	added	to	a	table	that	is	different	to	the	table	of	the	interface	to	
which	it	t	is	attached.	The	creation	of	a	fib_import_t	will	trigger	the	creation	of	a	
fib_export_t.	

- fib_export_t.	A	representation	of	the	need	to	export	prefixes.	An	instance	is	associated	with	
the	attached	entry	in	the	export	VRF.	A	fib_export_t	can	have	many	associated	fib_import_t	
objects	representing	multiple	VRFs	into	which	the	prefix	is	exported.	

	

Figure	6:	Attached	Export	Class	diagram.	

	

Figure	7:	Attached	Export	object	diagram	

Figure	7	shows	an	object	instance	diagram	for	the	export	of	a	connected	from	table	1	to	two	other	
tables.	The	/32	adj-fib	and	local	prefix	 in	the	export	VRF	are	exported	into	the	import	VRFs,	where	
they	 are	 sourced	 as	 ‘Attached-export’	 and	 inherit	 the	 forwarding	 information	 from	 the	 exported	

entry.	The	attached	prefix	in	the	import	VRF	also	performs	cover	tracking	with	the	connected	prefix	
in	 the	 export	 VRF	 so	 that	 it	 can	 react	 to	 updates	 to	 that	 prefix	 that	will	 require	 the	 removal	 the	
imported	covered	prefixes.	

Graph	Walks	
All	 FIB	 object	 types	 are	 allocated	 from	 a	 VPP	memory	 pool13.	 The	 objects	 are	 thus	 susceptible	 to	
memory	 re-allocation,	 therefore	 the	 use	 of	 a	 bare	 ‘C’	 pointer	 to	 refer	 to	 a	 child	 or	 parent	 is	 not	
possible.	 Instead	 there	 is	 the	 concept	of	 a	 fib_node_ptr_t	which	 is	 a	 tuple	of	 type,index.	 The	 type	
indicates	what	type	of	object	 it	 is	 (and	hence	which	pool	to	use)	and	the	index	 is	the	 index	 in	that	
pool.	This	allows	for	the	safe	retrieval	of	any	object	type.		

When	a	child	resolves	via	a	parent	 it	does	so	knowing	the	type	of	that	parent.	The	child	to	parent	
relationship	 is	 thus	 fully	known	to	the	child,	and	hence	a	 forward	walk	of	 the	graph	(from	child	to	
parent)	is	trivial.	However,	a	parent	does	not	choose	its	children,	it	does	not	even	choose	the	type.	
All	object	 types	 that	 form	part	of	 the	FIB	control	plane	graph	all	 inherit	 from	a	single	base	class14;	
fib_node_t.	 A	 fib_node_t	 indentifies	 the	 object’s	 index	 and	 its	 associated	 virtual	 function	 table	
provides	the	parent	a	mechanism	to	‘visit’	that	object	during	the	walk.	The	reason	for	a	back-walk	is	
to	inform	all	children	that	the	state	of	the	parent	has	changed	in	some	way,	and	that	the	child	may	
itself	need	to	update.	

To	support	the	many	to	one,	child	to	parent,	relationship	a	parent	must	maintain	a	list	of	its	children.	
The	requirements	of	this	list	are;	

- O(1)	 insertion	 and	delete	 time.	 Several	 child-parent	 relationships	 are	made/broken	during	
route	addition/deletion.	

- Ordering.	High	priority	 children	are	 at	 the	 front,	 low	priority	 at	 the	back	 (see	 section	 Fast	
Convergence)	

- Insertion	at	arbitrary	locations.	

To	 realise	 these	 requirements	 the	 child-list	 is	 a	 doubly	 linked-list,	where	 each	 element	 contains	 a	
fib_node_ptr_t.	The	VPP	pool	memory	model	applies	to	the	list	elements,	so	they	are	also	identified	
by	an	index.	When	a	child	is	added	to	a	list	it	is	returned	the	index	of	the	element.	Using	this	index	
the	 element	 can	 be	 removed	 in	 constant	 time.	 The	 list	 supports	 ‘push-front’	 and	 ‘push-back’	
semantics	for	ordering.	To	walk	the	children	of	a	parent	is	then	to	iterate	of	this	list.	
	

A	back-walk	of	the	graph	 is	a	depth	first	search	where	all	children	 in	all	 levels	of	the	hierarchy	are	
visited.	 Such	 walks	 can	 therefore	 encounter	 all	 object	 instances	 in	 the	 FIB	 control	 plane	 graph,	
numbering	in	the	millions.	A	FIB	control-plane	graph	is	cyclic	in	the	presence	of	a	recursion	loop,	so	
the	walk	implementation	has	mechanisms	to	detect	this	and	exit	early.	

A	 back-walk	 can	 be	 either	 synchronous	 or	 asynchronous.	 A	 synchronous	walk	will	 visit	 the	 entire	
section	of	 the	graph	before	control	 is	 returned	to	 the	caller,	an	asynchronous	walk	will	queue	the	
walk	 to	 a	 background	 process,	 to	 run	 at	 a	 later	 time,	 and	 immediately	 return	 to	 the	 caller.	 To	
implement	asynchronous	walks	a	fib_walk_t	object	it	added	to	the	front	of	the	parent’s	child	list.	As	
children	are	 visited	 the	 fib_walk_t	 object	 advances	 through	 the	 list.	 Since	 it	 is	 inserted	 in	 the	 list,	
																																																													
13	Fast	memory	allocation	is	crucial	to	fast	route	update	times.	
14	VPP	may	be	written	in	C	and	not	C++	but	inheritance	is	still	possible.	

when	 the	walk	 suspends	 and	 resumes,	 it	 can	 continue	 at	 the	 correct	 location.	 It	 is	 also	 safe	with	
respect	to	the	deletion	of	children	from	the	list.	New	children	are	added	to	the	head	of	the	list,	and	
so	will	not	encounter	the	walk,	but	since	they	are	new,	they	already	have	the	up	to	date	state	of	the	
parent.	

A	VLIB	process	 ‘fib-walk’	 runs	 to	perform	 the	asynchronous	walks.	VLIB	has	no	priority	 scheduling	
between	respective	processes,	so	the	fib-walk	process	does	work	in	small	increments	so	it	does	not	
block	 the	main	 route	download	process.	 Since	 the	main	download	process	 effectively	 has	 priority	
numerous	asynchronous	back-walks	can	be	started	on	the	same	parent	instance	before	the	fib-walk	
process	can	run.	FIB	is	a	‘final	state’	application.	If	a	parent	changes	n	times,	it	is	not	necessary	for	
the	children	to	also	update	n	times,	instead	it	is	only	necessary	that	this	child	updates	to	the	latest,	
or	 final,	 state.	 Consequently	when	multiple	walks	 on	 a	 parent	 (and	 hence	 potential	 updates	 to	 a	
child)	are	queued,	these	walks	can	be	merged	into	a	single	walk.		

Choosing	between	a	synchronous	and	an	asynchronous	walk	is	therefore	a	trade-off	between	time	it	
takes	to	propagate	a	change	in	the	parent	to	all	of	 its	children,	versus	the	time	it	takes	to	act	on	a	
single	route	update.	For	example,	if	a	route	update	where	to	affect	millions	of	child	recursive	routes,	
then	the	rate	at	which	such	updates	could	be	processed	would	be	dependent	on	the	number	of	child	
recursive	route	–	which	would	not	be	good.	At	the	time	of	writing	FIB2.0	uses	synchronous	walk	in	
all	locations	except	when	walking	the	children	of	a	path-list,	and	it	has	more	than	3215	children.	This	
avoids	the	case	mentioned	above.	

Data-Plane	
The	 data-plane	 data	 model	 is	 a	 directed,	 acyclic16	 graph	 of	 heterogeneous	 objects.	 A	 packet	 will	
forward	walk	the	graph	as	it	is	switched.	Each	object	describes	the	actions	to	perform	on	the	packet.	
Each	 object	 type	 has	 an	 associated	 VLIB	 graph	 node.	 For	 a	 packet	 to	 forward	 walk	 the	 graph	 is	
therefore	to	move	from	one	VLIB	node	to	the	next,	with	each	performing	the	required	actions.	This	
is	the	heart	of	the	VPP	model.		

The	data-plane	graph	is	composed	of	generic	data-path	objects	(DPOs).	A	parent	DPO	is	identified	by	
the	tuple:{type,index,next_node}.	The	next_node	parameter	 is	 the	 index	of	the	VLIB	node	to	which	
the	packets	should	be	sent	next,	this	is	present	to	maximise	performance	-	it	is	important	to	ensure	
that	the	parent	does	not	need	to	be	read17	whilst	processing	the	child.	Specialisations18	of	the	DPO	
perform	distinct	actions.	The	most	common	DPOs	and	briefly	what	they	represent	are:	

- Load-balance:	a	choice	in	an	ECMP	set.		
- Adjacency:		apply	a	rewrite	and	forward	through	an	interface	
- MPLS-label:	impose	an	MPLS	label.	
- Lookup:	perform	another	lookup	in	a	different	table.	

The	data-plane	graph	is	derived	from	the	control-plane	graph	by	the	objects	therein	‘contributing’	a	
DPO	 to	 the	 data-plane	 graph.	 Objects	 in	 the	 data-plane	 contain	 only	 the	 information	 needed	 to	
switch	a	packet,	 they	are	therefore	simpler,	and	 in	memory	terms	smaller,	with	the	aim	to	 fit	one	

																																																													
15	The	value	is	arbitrary	and	yet	to	be	tuned.	
16	Driected	implies	it	cannot	be	back-walked.	It	is	acyclic	even	in	the	presence	of	a	recursion	loop.	
17	Loaded	into	cache,	and	hence	potentially	incurring	a	d-cache	miss.	
18	The	engaged	reader	is	directed	to	vnet/vnet/dpo/*	

DPO	on	a	single	cache-line.	The	derivation	from	the	control	plane	means	that	the	data-plane	graph	
contains	only	object	whose	current	state	can	forward	packets.	For	example,	the	difference	between	
a	fib_path_list_t	and	a	load_balance_t	is	that	the	former	expresses	the	control-plane’s	desired	state,	
the	latter	the	data-plane	available	state.	If	some	paths	in	the	path-list	are	unresolved	or	down,	then	
the	load-balance	will	not	include	them	in	the	forwarding	choice.	

Figure	8	shows	a	simplified	view	of	the	control-plane	graph	indicating	those	objects	that	contribute	
DPOs.	Also	shown	are	the	VLIB	node	graphs	at	which	the	DPO	is	used.	

	

Figure	8:	DPO	contributions	for	a	non-recursive	route	

Each	fib_entry_t	contributes	it	own	load_balance_t,	for	three	reasons;	

- The	result	of	a	 lookup	in	a	 IPv[46]	table	 is	a	single	32	bit	unsigned	integer.	This	 is	an	 index	
into	a	memory	pool.	Consequently	the	object	type	must	be	the	same	for	each	result.	Some	
routes	will	need	a	load-balance	and	some	will	not,	but	to	insert	another	object	in	the	graph	
to	represent	this	choice	is	a	waste	of	cycles,	so	the	load-balance	object	is	always	the	result.	If	
the	route	does	not	have	ECMP,	then	the	load-balance	has	only	one	choice.		

- In	order	to	collect	per-route	counters,	the	lookup	result	must	in	some	way	uniquely	identify	
the	fib_entry_t.	A	shared	load-balance	(contributed	by	the	path-list)	would	not	allow	this.	

- In	the	case	the	fib_entry_t	has	MPLS	out	labels,	and	hence	a	fib_path_ext_t,	then	the	load-
balance	must	be	per-prefix,	 since	 the	MPLS	 labels	 that	are	 its	parents	are	 themselves	per-
fib_entry_t.	

	Figure	9	shows	the	load-balance	objects	contributed	for	a	recursive	route.	

	

Figure	9:	DPO	contribution	for	a	recursive	route.	

	

Figure	10:	DPO	Contributions	from	labelled	recursive	routes.	

Figure	10	shows	the	derived	data-plane	graph	for	a	labelled	recursive	route.	There	can	be	as	many	
MPLS-label	DPO	instances	as	there	are	routes	multiplied	by	the	number	of	paths	per-route.	For	this	
reason	the	mpls-label	DPO	should	be	as	small	as	possible19.	

The	 data-plane	 graph	 is	 constructed	 by	 ‘stacking’	 one	 instance	 of	 a	 DPO	 on	 another	 to	 form	 the	
child-parent	relationship.	When	this	stacking	occurs,	the	necessary	VLIB	graph	arcs	are	automatically	
constructed	from	the	respected	DPO	type’s	registered	graph	nodes.	

The	diagrams	above	 show	 that	 for	 any	 given	 route	 the	 full	 data-plane	 graph	 is	 known	before	 any	
packet	arrives.	 If	 that	 graph	 is	 composed	of	n	objects,	 then	 the	packet	will	 visit	n	nodes	and	 thus	
incur	a	forwarding	cost	of	approximately	n	times	the	graph	node	cost.	This	could	be	reduced	if	the	
graph	were	‘collapsed’	into	a	single	DPO	and	associated	node.	However,	collapsing	a	graph	removes	
the	indirection	objects	that	provide	fast	convergence	(see	section	Fast	Convergence).	To	collapse	is	
then	a	trade-off	between	faster	forwarding	and	fast	convergence;	VPP	favours	the	latter.	

This	DPO	model	effectively	exists	today	but	is	informally	defined.	Presently	the	only	object	that	is	in	
the	data-plane	 is	 the	 ip_adjacency_t,	however,	 features	 (like	 ILA,	OAM	hop-by-hop,	 SR,	MAP,	etc)	
sub-type	 the	adjacency.	 The	member	 lookup_next_index	 is	 equivalent	 to	defining	a	new	 sub-type.	
Adding	to	the	existing	union,	or	casting	sub-type	specific	data	into	the	opaque	member,	or	even	over	
the	 rewrite	 string	 (e.g.	 the	 new	 port	 range	 checker),	 is	 equivalent	 defining	 a	 new	 C-struct	 type.	
Fortunately,	 at	 this	 time,	 all	 these	 sub-types	 are	 smaller	 in	memory	 than	 the	 ip_adjacency_t.	 It	 is	
now	 possible	 to	 dynamically	 register	 new	 adjacency	 sub-types	 with	 ip_register_adjacency()	 and	
provide	a	custom	format	function.			

In	my	 opinion	 a	 strongly	 defined	 object	model	will	 be	 easier	 for	 contributors	 to	 understand,	 and	
more	robust	to	implement.		

Tunnels	
Tunnels	share	a	similar	property	to	recursive	routes	in	that	after	applying	the	tunnel	encapsulation,	a	
new	packet	must	be	forwarded,	 i.e.	 forwarding	 is	 recursive.	However,	as	with	recursive	routes	the	
tunnel’s	destination	is	known	beforehand,	so	the	recursive	switch	can	be	avoided	if	the	packet	can	
follow	the	already	constructed	data-plane	graph	for	the	tunnel’s	destination.	This	process	of	joining	
to	DP	graphs	together	is	termed	‘stacking’.	

																																																													
19	i.e.	we	should	not	re-use	the	adjacency	structure.	

			

Figure	11:	Tunnel	control	plane	object	diagram	

Figure	11	shows	the	control	plane	object	graph	for	a	route	via	a	tunnel.	The	two	sub-graphs	for	the	
route	 via	 the	 tunnel	 and	 the	 route	 for	 the	 tunnel’s	 destination	 are	 shown	 to	 the	 right	 and	 left	
respectively.	The	red	line	shows	the	relationship	form	by	stacking	the	two	sub-graphs.	The	adjacency	
on	the	tunnel	interface	is	termed	a	‘mid-chain’	this	it	is	now	present	in	the	middle	of	the	graph/chain	
rather	than	its	usual	terminal	location.	

The	mid-chain	 adjacency	 is	 contributed	 by	 the	gre_tunnel_t	 ,	which	 also	 becomes	 part	 of	 the	 FIB	
control-plane	graph.	Consequently	it	will	be	visited	by	a	back-walk	when	the	forwarding	information	
for	 the	 tunnel’s	destination	 changes.	 This	will	 trigger	 it	 to	 restack	 the	mid-chain	adjacency	on	 the	
new	load_balance_t	contributed	by	the	parent	fib_entry_t.	

If	 the	 back-walk	 indicates	 that	 there	 is	 no	 route	 to	 the	 tunnel,	 or	 that	 the	 route	 does	 not	meet	
resolution	 constraints,	 then	 the	 tunnel	 can	 be	 marked	 as	 down,	 and	 fast	 convergence	 can	 be	
triggered	in	the	same	way	as	for	physical	interfaces	(see	section	...).	

	

MPLS	FIB	
There	 is	 a	 tight	 coupling	 between	 IP	 and	MPLS	 forwarding.	MPLS	 forwarding	 equivalence	 classes	
(FECs)	are	often	an	 IP	prefix	–	 that	 is	 to	say	 that	 traffic	matching	a	given	 IP	prefix	 is	 routed	 into	a	

MPLS	label	switch	path	(LSP).	It	is	thus	necessary	to	be	able	to	associated	a	given	prefix/route	with	
an	[out-going]	MPLS	label	that	will	be	imposed	when	the	packet	is	forwarded.	This	is	configured	as:	

ip route add 1.1.1.1/32 via 10.10.10.10 GigE0/0/0 out-label 33

packets	 matching	 1.1.1.1/32	 will	 be	 forwarded	 out	 GigE0/0/0	 and	 have	 MPLS	 label	 33	 imposed.	
More	than	one	out-going	label	can	be	specified.	Out-going	MPLS	labels	can	be	applied	to	recursive	
and	non-recursive	routes,	e.g;	

ip route add 2.2.2.0/24 via 1.1.1.1 out-label 34

packets	 matching	 2.2.2.0/24	 will	 thus	 have	 two	 MPLS	 labels	 imposed;	 34	 and	 33.	 This	 is	 the	
realisation	of,	e,g,	an	MPLS	BGP	VPNv4.	

The	 router	 receiving	 the	 MPLS	 encapsulated	 packets	 needs	 to	 be	 programmed	 with	 actions	
associated	which	each	label	value	–	this	is	the	role	of	the	MPLS	FIB.	The	MPLS	FIB	Is	a	table,	whose	
key	is	the	MPLS	label	value	and	end-of-stack	(EOS)	bit,	which	stores	the	action	to	perform	on	packets	
with	matching	encapsulation.	Currently	supported	actions	are:	

1) Pop	the	label	and	perform	an	IPv[46]	lookup	in	a	specified	table	
2) Pop	the	label	and	forward	via	a	specified	next-hop	(this	is	penultimate-hop-pop,	PHP)	
3) Swap	the	label	and	forward	via	a	specified	next-hop.	

These	can	be	programmed	respectively	by:	

1) mpls local-label 33 ip4-lookup-in-table X	
2) mpls local-label 33 via 10.10.10.10 GigE0/0/0	
3) mpls local-label 33 via 10.10.10.10 GigE0/0/0 out-label 66	

the	 latter	 is	 an	example	of	 an	MPLS	 cross	 connect.	Any	description	of	 a	next-hop,	 recursive,	 non-
recursive,	labelled,	non-labelled,	etc,	that	is	valid	for	an	IP	prefix,	is	also	valid	for	an	MPLS	local-label.	

Implementation	
The	MPLS	FIB	is	implemented	using	exactly	the	same	data	structures	as	the	IP	FIB.		

The	only	difference	is	the	implementation	of	the	table.	Whereas	for	IPv4	this	is	an	mtrie	and	for	IPv6	
a	hash	table,	for	MPLS	it	is	a	flat	array	indexed	by	a	21	bit	key	(label	&	EOS	bit).	This	implementation	
is	chosen	to	favour	packet	forwarding	speed.	

Tunnels	
VPP	no	 longer	supports	MPLS	tunnels	 that	are	coupled	to	a	particular	 transport,	 i.e.	MPLSoGRE	or	
MPLSoEth.	Such	tight	coupling	is	not	beneficial.	Instead	VPP	supports;	

1) MPLS	LSPs	associated	with	IP	prefixes	and	MPLS	local-labels	(as	described	above)	which	are	
transport	independent	(i.e.	the	IP	route	could	be	reachable	over	a	GRE	tunnel,	or	any	other	
interface	type).	

2) A	generic	uni-directional	MPLS	tunnel	interface	that	is	transport	independent.	

An	MPLS	tunnel	is	effectively	an	LSP	with	an	associated	interface.	The	LSP	can	be	described	by	any	
next-hop	type	(recursive,	non-recursive	etc),	e.g.:	

mpls tunnel add via 10.10.10.10 GigE0/0/0 out-label 66

IP	routes	and/or	MPLS	x-connects	can	be	routed	via	the	interface,	e.g.	

ip route add 2.2.2.0/24 via mpls-tunnel0

packets	matching	the	route	for	2.2.2.0/24	would	thus	have	label	66	imposed	since	it	is	transmitted	
via	the	tunnel.		

These	MPLS	tunnels	can	be	used	to	realise	MPLS	RSVP-TE	tunnels.	

Fast	Convergence	
	

