
P4VPP	FD.io Project	Kickoff
August	24,	2017

P4VPP	Project	Overview

• P4	is	a	domain	specific	language	that	allows	developers	to	write	packet	
processing	applications	for	a	variety	of	architectures,	including	Switching	
ASICs,	Network	Processors	and	CPUs.	The	P4VPP	project	will	enable	these	
capabilities	to	be	mapped	onto	the	FD.io VPP	dataplane	software	platform.	
• The	P4VPP	project	will	build	a	P4	toolchain	that	maps	the	user	supplied	P4	
program	onto	a	FD.io VPP	software	platform,	thereby	minimizing	the	effort	
to	create	new	features,	and	moving	the	complexity	of	achieving	
performance	to	the	P4	compiler.
• The	goal	of	this	project	will	be	to	create	a	functional	framework	first	and	
foremost,	and	enable	ongoing	development	to	further	optimize	the	
performance	results	from	the	P4C	VPP	compiler	backend.

P4VPP	– P4	to	VPP	Compiler	(vSwitch	Example)

NIC

VPP	Data-Plane

DPDK

App

P4	Program

Network	Ports

Host
UserSpace

Guest
UserSpace

PCIe
Adapter

PVPP	
Compiler

VPP	forwarding	graph

Enable	P4/VPP	developers	to	target	both	Full	Ingress	to	Egress	
processing,	as	well	as	P4	programmable	sections	mixed	with	existing	
VPP	nodes	and	feature	paths.

Project	Scope
The	scope	of	the	P4VPP	project	will	be	the	creation	of	software	tools	that	are	necessary	to	enable	a	P4	program	to	compile	and	run	on	the	
FD.io VPP	software	platform.	

Minimally	will	include	the	target	specific	extensions	to	the	p4.org	P4C	compiler	to	target	the	VPP	platform,	both	in	terms	of	the	data-plane	and	
the	control	plane	interfaces.	

The	packaging	of	the	compiler	artifacts	will	target	a	VPP	plug-in	model,	allowing	for	out-of-tree	development,	packaging	and	release.

Contributions	will	target	the	following	capabilities:

• P4C	Compiler	Backend	that	targets	the	VPP	Software	Platform,	including	both	the	data-plane	packet	manipulations,	as	well	as	the	control	
plane	interface	into	table/action	population.

• Generalized	VPP	libraries	that	can	be	used	by	the	P4	compiler.	These	libraries	will	minimally	include	P4	table	lookups	(exact,	ternary,	range,	
and	lpm)	and	P4	stateful	memories	such	as	counters	and	registers.

• Low-level	Performance	instrumentation	that	can	be	used	to	measure	and	validate	the	results	of	compiler	optimizations.

• Compiler	generation	for	API	definition	and	backend	implementation	for	all	configurable	parts	of	the	P4	program,	specifically	match	tables	
and	action	parameters

• Toolchain	generation	of	VPP	specific	build	environment	and	plugin	instrumentation	that	allows	P4	programs	to	be	built	out-of-tree,	and	
dynamically	loaded	into	the	VPP	execution	context.

• P4	Program	Fragments	that	can	be	used	to	test	the	P4VPP	backend	functional	correctness.

• P4	Programs	and	associated	test	harnesses	that	represent	the	VPP	CSIT	functional	and	performance	test	cases.	The	goal	being	to	establish	
functional	equivalency	and	performance	baselines	that	can	be	used	to	compare	the	correctness	of	the	compiler	as	well	as	the	performance	
results.

P4VPP	– Work	to	Date
• Started	as	a	summer	PhD	intern	researh project	in	June	2016	co-sponsored	by	Cisco	and	Barefoot	Networks

• Nick	McKeown	(Stanford/Barefoot)	expressed	interest	and	volunteered	Sean	Choi	who	was	interning	at	Barefoot	in	Summer/16
• Xiang	Long,	PhD	student	at	Cornell	also	was	interested	in	this	area
• Ultimately	pulled	in	additional	help		on	the	paper	writeup from	Muhammad	Shahbaz (Princeton)	who	co-authored	the	PISCES	work	and	helped	

with	the	results/paper	editing.

• Summer/Fall16
• p4.org	was	going	through	two	disruptive	changes:	P4_16	was	being	defined	and	the	language	was	going	through	a	fair	amount	of	churn.		

Original	Python	based	compiler	for	P4_14	was	being	completely	rewritten	in	C++	and	is	was	transitioning	to	what	is	now	P4C.		The compiler	
was	not	deemed	stable	enough	at	the	time	to	natively	integrate	into	mid/back	end	passes.

• Resulting	decision	was	to	hook	into	the	JSON	backend	the	P4C	compiler	generated	for	the	BMv2	simulation	environment	as	this	was	deemed	
very	stable	as	it	was	used	for	both	P4_14	and	P4_16	simulation.

• The	initial	backend	leverage	Python	COG	templates	as	a	mechanism	to	generate	VPP	C-code	from	the	JSON	IR	the	P4c	Compiler	used
• Work	was	published	as	a	Poster	to	SOSR17*	and	as	a	short	paper	to	APNET17**

• Summer/17	– Restarted	work	in	this	area	with	a	goal	to	move	the	contributions	into	the	FD.io project
• Cisco	has	2	resources	actively	working	on	getting	a	functional	prototype	in	place	and	ready	to	contribute	that	started	point	to	the	community	

as	soon	as	the	project	is	approved	and	GIT	repos	are	created

• Initiator	set	of	Committers:
• Andy	Keep LF-ID:	akeep
• James	Coole LF-ID:	jamescoole
• Cian	Ferriter LF-ID:CianFerriter

*	https://sosr17demos.hotcrp.com/doc/sosr17demos-final19.pdf
**	http://stanford.edu/~yo2seol/static/pvpp-apnet.pdf

