
Dual Mode, Multi-Protocol, 
Multi-Instance (DMM)



• Introduction

• Current challenges of transport layer protocol

• Proposal

• DMM framework design

• Road map & Scope

Contents



DMM (Dual Mode, Multi-protocol, Multi-instance) 

• DMM is a concept to provide a running multi-protocol/multi-instance
framework for the applications where applications can

• Work with both user and kernel mode network stack

• Use different network protocol stack based on their functional and performance 
requirement (e.g. QOS)

• Work with multiple instance of transport protocol stack

• DMM also provides a development interface for userspace protocol stack 
developers. 

• Easy to integrate a new userspace protocol stack by the DMM stack interface

• Easy to customize the algorithms of a available userspace protocol stack

DMM Introduction



 Applications bringing different network requirements for QOS & SLA to Transport protocol

 Often TCP protocol is a performance killer i.e) during packet loss/congestion results in 

very low link utilization

 Transport layer protocol capability, which is traditionally provided by OS networking 

stack and monolithic in design and inflexible

 Legacy TCP is best effort based and provides no performance guarantee

 One-fits all protocol or algorithm becomes less feasible, and difficult to integrate the new 

algorithm into current protocol stacks.

 Complicated and Heterogeneous Network Environments

 Growing concern on network security built on a specific protocol

 Utilize different kinds of protocols for apps in one host, or even in one app

Current Challenges



We would like to propose DMM frame work to support for multiple protocols 
and multi-instances on top of VPP that has achieved great success on 
package forwarding.

We propose a generic framework to support multiple protocols and at the 
same time is agnostic to applications. This framework including:

• Protocol orchestrator (L-RD and C-RD)

• Socket bridge layer

• EAL for protocol stack

Proposal



DMM Framework

POSIX Socket compatible API (LD_PRELOAD)

SOCKET (MUX) P
ro

to
co

l o
rch

estrato
r

VPP 
host 
stack

TLDK F-stack

Kernel 
stack

Ipv6 input/out 
put

Ipv4 
input/output

DPDK input

Web APP Video streaming Online gaming

n
R

D
H

o
n

eyco
m

b

Socket Bridge(SBR)

DHT

REST

REST

VPP

Honeycomb

User
Space

Kernel
Space

NIC

…

DMM EAL

 Existing applications or new applications use 

Posix compatible and uniform socket API library 

(via system hijacking or LD_PRELOAD).

 Various stacks integrated in, like vpp hoststack, 

TLDK, F-stack and etc.

 Based on protocol lookup the corresponding 

protocol stack is chosen.

 Neuro Resource Discovery learn the set of 

protocol policies to route the packet. It can be 

like controller continuously monitor the network 

state and can update the policy rules 

dynamically on need basis. 



EAL in DMM

 EAL(env abstract layer) in DMM is 

responsible for isolate the interface of the

IO.

 Customed protocol stack will send/receive 

the pkgs from DMM EAL.

VPP L2-L3

DMM EAL over userspace L4

VPP 
host 
stack

TLDK RDMA …

DPDK

Pass to 
stack of 
kernel

Kernel 
stack

Stack 
include 
L2

DMM EAL DMM EAL



Protocol stacks in DMM

SOCKET (MUX)

VPP host 
stack

TLDK F-stack

Socket Bridge(SBR)

RDMA

DMM EAL

POSIX Socket compatible API (LD_PRELOAD)

Kernel 
stack

1 2 3 4

5

VPP L2-L3

• Multi-Protocol, Multi-instance

• SBR will provide a plugin to integrate for 

any new protocol stack 

• VPP hoststack can work as one specific 

userspace protocol stack.

• People can leverage this socket layer to 

add their own customized stacks for 

different scenarios.

5 Protocol stacks example listed, 

1 kernel stack, and 4 userspace stack



Road map & Scope

Step1 Step2 Step3

 Initial DMM 

Framework 

 Interface document

 Socket plugin 

mechanism

 Protocol Policy(L-RD 

part) through CLI

 Dual protocol state 

choice 

(kernel&userspace)

● Protocol stacks inside 

DMM based on VPP 

L3

● Integrate vpp

hoststack, TLDK

● Support for P2P 

communication 

between L-RD’s.

● Performance 

optimization, reduce 

the middle layer 

consumption

● Multi Instance 

support.

● Customized protocol 

algorithm plugin 

interface 

● Support more stacks



Thank you!


