
Rastislav Szabo

April 2017

Golang VPP Management Toolset

GoVPP

• Golang toolset for VPP management

• API based on the Go bindings generated from the VPP
binary API (JSON) and Go channels

• Currently used in:

• Cloud-native VNF Agent (to be open-sourced)

• Contiv-VPP integration

GoVPP

• Go bindings generator

• JSON -> Go structs with annotations

• GoVPP API packages

• API, core, VPP adapter

• Supporting code

• Examples, unit tests, VPP mocker for unit testing

Out of scope:

• “vppapiclient” library (the former “pneum” library) used to
communicate with VPP via CGO

• Binary API to JSON generator

Project Scope

Ready for plugin-based infrastructure of the management agents:

+--------------+

+--------------+ | |

| | | Agent Plugin |

| | | |

| Agent Core | +--------------+

| | +------+ govpp API |

| | | +--------------+

+--------------+ Go |

| | channels | +--------------+

| govpp core +------------+ | |

| | | | Agent Plugin |

+------+-------+ | | |

| | +--------------+

binary API | +------+ govpp API |

(vppapi lib) | +--------------+

|

+------+-------+

| |

| VPP |

| |

+--------------+

Internal Structure

Example of Generated Go Bindings
// ACLRule represents the VPP binary API data type

'acl_rule'.

// Generated from 'bin_api/acl.api.json', line 3:

//

// ["acl_rule",

// ["u8", "is_permit"],

// ["u8", "is_ipv6"],

// ["u8", "src_ip_addr", 16],

// ["u8", "src_ip_prefix_len"],

// ["u8", "dst_ip_addr", 16],

// ["u8", "dst_ip_prefix_len"],

// ["u8", "proto"],

// ["u16", "srcport_or_icmptype_first"],

// ["u16", "srcport_or_icmptype_last"],

// ["u16", "dstport_or_icmpcode_first"],

// ["u16", "dstport_or_icmpcode_last"],

// ["u8", "tcp_flags_mask"],

// ["u8", "tcp_flags_value"],

// {"crc" : "0x2715e1c0"}

//],

//

type ACLRule struct {

IsPermit uint8

IsIpv6 uint8

SrcIPAddr []byte `struc:"[16]byte"`

SrcIPPrefixLen uint8

DstIPAddr []byte `struc:"[16]byte"`

DstIPPrefixLen uint8

Proto uint8

SrcportOrIcmptypeFirst uint16

SrcportOrIcmptypeLast uint16

DstportOrIcmpcodeFirst uint16

DstportOrIcmpcodeLast uint16

TCPFlagsMask uint8

TCPFlagsValue uint8

}

// ACLAddReplace represents the VPP binary API message

'acl_add_replace'.

// Generated from 'bin_api/acl.api.json', line 43:

//

// ["acl_add_replace",

// ["u16", "_vl_msg_id"],

// ["u32", "client_index"],

// ["u32", "context"],

// ["u32", "acl_index"],

// ["u8", "tag", 64],

// ["u32", "count"],

// ["vl_api_acl_rule_t", "r", 0, "count"],

// {"crc" : "0x3c317936"}

//],

//

type ACLAddReplace struct {

ACLIndex uint32

Tag []byte `struc:"[64]byte"`

Count uint32 `struc:"sizeof=R"`

R []ACLRule

}

Example Usage

req := &acl.ACLAddReplace{

ACLIndex: ^uint32(0),

Tag: []byte("access list 1"),

R: []acl.ACLRule{

{

IsPermit: 1,

SrcIPAddr: net.ParseIP("10.0.0.0").To4(),

SrcIPPrefixLen: 8,

DstIPAddr: net.ParseIP("192.168.1.0").To4(),

DstIPPrefixLen: 24,

Proto: 6,

},

{

IsPermit: 1,

SrcIPAddr: net.ParseIP("8.8.8.8").To4(),

SrcIPPrefixLen: 32,

DstIPAddr: net.ParseIP("172.16.0.0").To4(),

DstIPPrefixLen: 16,

Proto: 6,

},

},

}

reply := &acl.ACLAddReplaceReply{}

err := ch.SendRequest(req).ReceiveReply(reply)

fmt.Printf("%+v\n", reply)

Also supported:

• Go channel-based API

• Multipart replies

• Notifications

• Counters

(+ specific package for

interface counters)

• Go toolset is build on remote import paths & remote access to
the repositories of the imported packages:

In Go code:

import "gerrit.fd.io/r/govpp"

To install GoVPP:

go get gerrit.fd.io/r/govpp

(“go get” effectively does “git clone” into GOPATH – we don’t want
to be downloading all the VPP source code into GOPATH)

Why a Separate Project?

Main Contact:

• Jan Medved (jmedved@cisco.com)

• Rastislav Szabo (raszabo@cisco.com)

Other Committers:

• Jozef Slezak (joslezak@cisco.com)

• Keith Burns (krb@cisco.com)

• Nikos Bregiannis (nbregian@cisco.com)

Initial Committers

mailto:jmedved@cisco.com
mailto:raszabo@cisco.com
mailto:joslezak@cisco.com
mailto:krb@cisco.com
mailto:nbregian@cisco.com

