Difference between revisions of "HICN"

From fd.io
Jump to: navigation, search
(For developers)
(Internet Drafts)
Line 60: Line 60:
 
Sources
 
Sources
 
https://gitlab.com/icn-team/internet-drafts
 
https://gitlab.com/icn-team/internet-drafts
 
 
  
 
Presentation of hICN at IETF IntArea WG
 
Presentation of hICN at IETF IntArea WG

Revision as of 09:39, 26 September 2019

HICN banner.png


hICN Facts

Project Lead: Luca Muscariello
Committers:

  • Luca Muscariello
  • Michele Papalini
  • Jordan Augé
  • Mauro Sardara
  • Alberto Compagno
  • Jacques Samain

Repository: git clone https://gerrit.fd.io/r/hicn
Mailing List: hicn-dev@lists.fd.io
Jenkins: jenkins silo
Gerrit Patches: code patches/reviews
Bugs: HICN bugs

Introduction

Hybrid ICN is an architecture that brings ICN into IPv6 as described in [1]. By doing that, hicn allows to generalize IPv6 networking by using location-independent name-based networking. This is made either at the network layer and at the transport layer by also providing name-based sockets to applications.

hicn allows to reuse existing IPv6 protocol and architectures, to extend them and deploy hybrid solutions based on the use case and application needs. Moreover, hicn can exploit hardware and software implementations heavily based on IP, making much simpler insertion of the technology in current networks, current applications and design future applications reusing what the industry already provides in terms of on the shelf components.

hicn is composed of network and transport stack for a variety of platforms. It supports end-host operating systems by using a portable and lightweight forwarder in C11 and a server oriented network forwarder based on VPP. The transport stack is implemented as a shared library written in C++11 where different transport protocols can be implemented based on the application needs. The early release will support a reliable transport protocol that is throughput optimal (à la TCP) and a transport protocol that can carry audio/video for real-time communications. The transport library provides an API for application that is based on INET socket API with in addition a post-socket API based on [5],[6],[7]. Both network forwarders will be equipped of binary APIs to provide a CLI as well data-model driven management features.

The project will have strong interactions with other fdio projects such as VPP, CICN in the first place and with DMM in the future.

Several applications will be supported from early releases such as HTTP, RTP where many-to-many communications, mobility and multi-homing is important. Some relevant applications include, but are not limited to, MPEG-DASH, WebRTC, heterogenous access (LTE/WiFi), mobile edge offloading (V2X, IoT), mobility management ([2],[3],[4])and cloud-native applications (service-mesh, micro-services communications).

In more detail, early releases would include:

  • 1. A core library that reflects the Internet draft specifications in [1];
  • 2. A forwarder implemented as a VPP plugin (server);
  • 3. A portable lightweight forwarder (client);
  • 4. A transport library compatible with both client and server forwarders implementing transport protocols.

Getting Started

The hICN stack is available for the following platforms:

For developers

HICN/Contribute

News

FD.io Blog Post

IETF 104 Hackathon

FD.io mini summit


Internet Drafts

IETF I-D

Sources https://gitlab.com/icn-team/internet-drafts

Presentation of hICN at IETF IntArea WG Slides and Video

Meetings

A Slack space is available to discuss about hICN development.

Fd.io hICN Slack Space

Meetings can also be launched by using Zoom integrated to the Slack space.


The git repo is also synced to github at

https://github.com/FDio/hicn

Also available on Google Play Store

https://play.google.com/store/apps/developer?id=ICN+Team&hl=en


Folder Description Documentation
lib (C11) Core support library core lib
hicn-plugin (POSIX C) VPP plugin. You need to know about VPP VPP plugin
hicn-light (C11) Lightweight packet forwarder. It is a portable forwarder for most used client devices such as macOS, Windows, Android, iOS, Linux. hicn light
libtransport (C++11) Library that contains transport protocol implementations as well as a socket API. Transport
utils Tools for testing
apps Application examples using hicn stack

Supported Platform

- Ubuntu 16.04 LTS 
- Ubuntu 18.04 LTS 
- Debian Stable/Testing
- Red Hat Enterprise Linux 7
- CentOS 7
- Android 8
- iOS 12
- macOS 10.12
- Windows 10


hICN vRouter and vSwitch

Work in progress:

  • hicn vRouter: FRR, Sysrepo, Netopeer server, hICN vSwitch in the same Docker.
  • hicn vSwitch in a docker container.

https://hub.docker.com/r/icnteam/vrouter https://hub.docker.com/r/icnteam/hicn_vswitch

docker pull icnteam/hicn_vswitch

Provides a docker image with hicn VPP plugin and NETCONF/YANG hicn API.

The YANG model can be retrieved from

https://github.com/FDio/hicn/blob/master/utils/sysrepo-plugins/yang/hicn/hicn.yang


docker pull icnteam/vhost

Tutorials

hICN Howtos


Current Release

Current release is 19.08 and is available on Package Cloud

Releases management

hICN releases are distributed every quarter (End of Jan, Apr, Jul, Oct) based on calendar versioning , i.e. YY.MM. The master branch is always tagged with the latest release which is the latest VPP stable release. As soon as a new VPP release is distributed the hICN master branch will merge code from development branches and keep it in sync with the newly released VPP distribution. The server stack of hICN project, based on VPP, is guaranteed to work with the latest stable VPP release only.

The client stack is unaffected by VPP release management.

hicn release management


Packages are published for both the amd64 (Intel) and aarch64 (ARM) architectures. The packages are stored in the same repository so no special action is required to select your architecture.

Binary distributions are available on Package Cloud for:

- Ubuntu 16.04 LTS (amd64, aarch64)
- Ubuntu 18.04 LTS (amd64, aarch64)
- CentOS 7 (x86_64, aarch64)

Bibliography

  • [1] Muscariello, L., Carofiglio, G., Auge, J., and M. Papalini, "Hybrid Information-Centric Networking", draft-muscariello-intarea-hicn-01 (work in progress), December 2018.
  • [2] Auge, J., Carofiglio, G., Muscariello, L., and M. Papalini, "Anchorless mobility through hICN" draft-auge-dmm-hicn-mobility-01 (work in progress), December 2018.
  • [3] Auge, J., Carofiglio, G., Muscariello, L., and M. Papalini, "Anchorless mobility management through hICN (hICN-AMM): Deployment options" draft-auge-hicn-mobility-deployment-options-01 (work in progress), December 2018.
  • [4] Bogineni K., Akhavain A., Herbert T., Farinacci T., et al. "Optimized Mobile User Plane Solutions for 5G" draft-bogineni-dmm-optimized-mobile-user-plane-01 (work in progress), December 2018.
  • [5] Pauly, T., Trammell, B., Brunstrom, A., Fairhurst, G., Perkins, C., Tiesel, P., and C. Wood, "An Architecture for Transport Services", draft-ietf-taps-arch-02 (work in progress), October 2018.
  • [6] Brunstrom, A., Pauly, T., Enghardt, T., Grinnemo, K., Jones, T., Tiesel, P., Perkins, C., and M. Welzl, "Implementing Interfaces to Transport Services", draft- ietf-taps-impl-02 (work in progress), October 2018.
  • [7] Trammell, B., Welzl, M., Enghardt, T., Fairhurst, G., Kuehlewind, M., Perkins, C., Tiesel, P., and C. Wood, "An Abstract Application Layer Interface to Transport Services", draft-ietf-taps-interface-02 (work in progress), October 2018.