Difference between revisions of "VPP/SecurityGroups"
(→Implementation plan) |
(→General approach to the design) |
||
Line 183: | Line 183: | ||
}; | }; | ||
− | == | + | == Design and prototyping == |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
+ | The full design is being prototyped in https://github.com/vpp-dev/vpp-lua-plugin/blob/master/samples/polua.lua | ||
== CLI == | == CLI == |
Revision as of 15:44, 17 October 2016
Contents
[hide]VPP Security Groups
Introduction
Features are tracked as they are developed in the following VPP-427.
Requirements
- Support classifiers/filters on any interface type (bridged / routed)
- Filter on IP-addresses with address mask or prefix length (IPv4 and IPv6)
- Filter on source and destination TCP/UDP port ranges
- Filter on source and destination L2 MAC addresses
- Support IPv6 with extension headers present
- Support fragmented packets and unknown transport layer headers
- Combinations of the above filters (e.g. MAC + IP)
- Filters on ingress and egress interfaces
- Stateful firewall. No application layer filtering.
Work list
Task | Owner | Priority | Status | Description |
---|---|---|---|---|
API definition | Ole | 0 | WIP | |
Ingress/Egress support for classifier | 0 | |||
Support for L2/L3 interfaces | 0 | |||
"Established" behaviour | 1 | |||
Stateful firewall | 1 | |||
Port ip_tables_firewall.py from Neutron as unit test | 1 |
API
/* * Access List Rule entry * * Future considerations: * u32 proto_flags; * u8 traffic_class; * u32 flow_label; * u32 extension_header_present; * u8 port_range_operator */ typeonly define acl_rule { u8 is_permit; u8 is_ipv6; u8 src_ip_addr[16]; u8 src_ip_prefix_len; u8 dst_ip_addr[16]; u8 dst_ip_prefix_len; u8 proto; u16 src_port; u16 dst_port; };
define acl_add { u32 client_index; u32 context; u32 count; vl_api_acl_rule r[count]; };
define acl_add_reply { u32 context; u32 acl_index i32 retval; };
define acl_del { u32 client_index; u32 context; u32 acl_index };
define acl_del_reply { u32 context; i32 retval; };
define acl_interface_add_del { u32 client_index; u32 context; u8 is_add; u8 is_input; u32 sw_if_index; u32 acl_index; }
define acl_interface_add_del_reply { u32 context; i32 retval; };
define acl_dump { u32 client_context; u32 context; u32 sw_if_index; /* ~0 for all tunnels */ }
define acl_details { u32 context; u32 sw_if_index; u32 acl_index; u32 count; vl_api_acl_rule_t r[count]; }
TBD: L2 API
/** Add or delete MAC / IP ingress filter. These rules restrict the MAC addresses that can send the traffic. If the ip_address is all-zero, any IP address is allowed and only the MAC address is used for the ingress filtering. There can be many MAC addresses on a given interface, a given MAC address may have multiple addresses associated with it (by means of separate ingress rules), and different MAC addresses can also have the same addresses. */ define ip_apr_macip_add_del_ingress { u32 client_index; u32 context; u32 sw_if_index; u8 is_add; u8 is_ipv6; u8 mac_address[6]; }; /** @param context - sender context, to match reply w/response @param retval - return code for the request */ define ip_apr_macip_add_del_ingress_reply { u32 context; i32 retval; };
Design and prototyping
The full design is being prototyped in https://github.com/vpp-dev/vpp-lua-plugin/blob/master/samples/polua.lua
CLI
set interface input acl intfc <int> [ip4-table <index>] [ip6-table <index>] [l2-table <index>] [del] show inacl type [ip4|ip6|l2]
classify table [miss-next|l2-miss_next|acl-miss-next <next_index>] mask <mask-value> buckets <nn> [skip <n>] [match <n>] [del] show classify tables [index <nn>] classify session [hit-next|l2-hit-next|acl-hit-next <next_index>|policer-hit-next <policer_name>] table-index <nn> match [hex] [l2] [l3 ip4] [opaque-index <index>]
test classify [src <ip>] [sessions <nn>] [buckets <nn>] [table <nn>] [del]
set ip classify intfc <int> table-index <index>
set interface ip6 table <intfc> <table-id>
set interface l2 input classify intfc <interface-name> [ip4-table <n>] [ip6-table <n>] [other-table <n>]
set interface l2 output classify intfc <<interface-name>> [ip4-table <n>] [ip6-table <n>] [other-table <n>]
set ip source-and-port-range-check
show ip source-and-port-range-check vrf <nn> <ip-addr> <port>
Examples
YANG model
Open Issues
- Security Group use case specific API. Done in VPP or control plane plugin?
Existing functionality
The existing functionality has a classifier (https://wiki.fd.io/view/VPP/Introduction_To_N-tuple_Classifiers) matching.
As the above document explains, the classifier is a series of chained tables, with each table having a specific mask, but this mask is the same for all entries.
This has been tested to happen in the L2 bridged case (test case: http://stdio.be/vpp/t/aytest-bridge-tap-py.txt).
Therefore, if we have an example policy:
nova secgroup-create test-secgroup test nova secgroup-add-rule test-secgroup icmp -1 -1 0.0.0.0/0 nova secgroup-add-rule test-secgroup tcp 22 22 0.0.0.0/0
So, assuming we match with offset 0 (from the beginning of the packet) the mask will look like this for the first line:
000000000000 000000000000 0000 00 00 0000 0000 0000 00 FF 0000 00000000 00000000 00 00 0000 0000 eth dst eth src et ihl t len id fo ttl pr cs ip4src ip4dst t c cs id +-------- L2 ---------------+----------- L3 IPv4 ------------------------------+--------L4 ICMP -----+
For the TCP matching on port 22 it will look as follows:
000000000000 000000000000 0000 00 00 0000 0000 0000 00 FF 0000 00000000 00000000 0000 FFFF 00000000 00000000 0000 0000 0000 0000 eth dst eth src et ihl t len id fo ttl pr cs ip4src ip4dst sp dp seq ack fl win cs urg +-------- L2 ---------------+----------- L3 IPv4 ------------------------------+--------L4 TCP ---------------------------------+
(One would need to round up the number of bytes to the nearest 16-byte boundary that makes sense)
For IPv6 assuming no extension headers, it will look similar, with the L3 header being the IPv6 one:
000000000000 000000000000 0000 0 00 00000 0000 FF 00 00000000000000000000000000000000 00000000000000000000000000000000 00 00 0000 0000 eth dst eth src et v TC fll len nh hl ipv6 src ipv dst t c cs id +-------- L2 ---------------+----------- L3 IPv6 --------------------------------------------------------------------+--------L4 ICMP -----+
For the TCP matching on port 22 it will look as follows:
000000000000 000000000000 0000 0 00 00000 0000 FF 00 00000000000000000000000000000000 00000000000000000000000000000000 0000 FFFF 00000000 00000000 0000 0000 0000 0000 eth dst eth src et v TC fll len nh hl ipv6 src ipv dst sp dp seq ack fl win cs urg +-------- L2 ---------------+----------- L3 IPv6 --------------------------------------------------------------------+--------L4 TCP ---------------------------------
Then using these masks one would create 4 tables, by using the API call:
classify_add_del_table(is_add=1, skip_n_vectors=0, mask=<MMMM>, match_n_vectors=<NNNN>,nbuckets=32,memory_size=20000, next_table_index=-1, miss_next_index=-1)
Let's call these tables "IPv4PROTO", "IPv4PROTO_TCPDPORT", "IPv6PROTO", "IPv6PROTO_TCPDPORT".
One would mention "IPv4PROTO" table as "next_table_index" table for "IPv4PROTO_TCPDPORT", and "IPv6PROTO" as "next_table_index" table for IPv6PROTO_TCPDPORT table.
Then one needs to populate the tables with the correct matches for "ICMP" and "tcp dst port 22". That can be done using API call:
classify_add_del_session(is_add=1, table_index=<XXXX>, match=<bytes-to-match>, hit-next-index -1)
The bytes "XXXX" above would be the match of one or several vectors, corresponding to the packet contents with the desired value.
WARNING: if the "skip" is nonzero in the table configuration, the match is still the entire bitstring, without skipping any leading bytes !!!
Then one would apply the IPv4PROTO_TCPDPORT and IPv6PROTO_TCPDPORT as l2 input classify tables.
The CLI for that is set interface l2 output classify intfc <name> ip[46]-table <tableid>.
The API for this is
classify_set_interface_l2_tables(sw_if_index=<INTFC>, ip4_table_index=<IPv4PROTO_TCPDPORT>, ip6_table_index=<IPv6PROTO_TCPDPORT>, other_table_index=-1, is_input=0)
This would allow to create a unidirectional policy, assuming the other policy is "permit all" it would be fine. If not -
then a mirror table entries will need to be created using the same logic.
The full script showing this process in detail using the python API is at http://stdio.be/vpp/t/classifier_script_simple_policy.txt
The Java API is located in $ROOT/vpp-api/java..