VPP/Build, install, and test images
This page explains how to build, install, and smoke-test a VPP package.
These procedures assume that you have a working development environment available. If you are not sure, see Setting Up Your Dev Environment.
Build A VPP Package
The following steps explain how to build a package.
- Open a command line (terminal) window.
- Navigate to the build-root directory.
$ cd [install_dir]/vpp/build-root
Step 2: (Optional) Update the tree and clean up the build directories
You can execute a git pull command to obtain the latest updates from the repository. It's also a good idea to execute a "make distclean" command after you do this. Execute the bootstrap script to make sure that build paths and build tools are in a clean state.
$ git pull $ make distclean $ ./bootstrap.sh
Step 3: Build Debian or RPM Packages
Execute the make command to start the build process. You can review the makefile (located in the build-root directory) to examine the build parameters.
To build a Debian package:
$ make V=0 PLATFORM=vpp TAG=vpp install-deb
To build an RPM package:
$ make V=0 PLATFORM=vpp TAG=vpp install-rpm
On Ubuntu 15.10 I needed to execute the line above using 'sudo' as the dh_install failed with errors.
Install A VPP Package
After you have successfully built a vpp package, you need to install it in order to run.
Step 1: Install the packages
Install the packages. You can install packages with standard package installation tools (dpkg -i on debian/ubuntu, rpm on RedHat/CentOS).
NOTE: You will need root privileges.
To install the package(s) on a Debian operating system:
- Login with root privileges
- Type the dpkg installation command:
# dpkg -i *.deb
To install the package(s) using Redhat Package Manager (RPM):
- Login with root privileges
- Type the RPM installation command:
$ rpm -i *.rpm
NOTE:
On Ubuntu/Debian and RedHat/CentOS systems, the vpp engine consists of multiple installation packages:
- vpp - main VPP process
- vpp-lib - dynamically linked libraries
- vpp-dev - development support files and examples
- vpp-dpdk-dkms - DKMS based DPDK kernel module package (only on Debian/Ubuntu)
Step 2: (Optional) Examine the startup configuration
After successful installation, vpp installs a startup config file named startup.conf in the /etc/vpp directory. You can modify that file if appropriate.
Here is a sample:
unix { nodaemon log /tmp/vpp.log cli-listen localhost:5002 full-coredump } api-trace { on } dpdk { socket-mem 1024 }
The default startup file does not have the 'cli-listen localhost:5002' line and then the telnet port is 5000.
Step 3: Start vpp (Debian / Ubuntu)
To start the data plane:
- Login with root privileges
- Type the start vpp command:
# start vpp
On Ubuntu 15.10 you need to have Upstart installed as they switched to systemd. Use 'sudo apt-get install upstart-sysv' then reboot. - Wait for a few seconds, then telnet to the vpp debug CLI console.
# telnet 0 5002
- Check the interface list.
It's a good idea to check the interface list to see which interfaces vpp has discovered. To show the interface list, execute the show command:vpp# show interface
The following is an example of an interface list. The interface set varies depending on the system configuration.
Name Idx State Counter Count GigabitEthernet2/2/0 5 down GigabitEthernet2/3/0 6 down GigabitEthernet2/4/0 7 down GigabitEthernet2/5/0 8 down GigabitEthernet2/6/0 9 down GigabitEthernet2/7/0 10 down local0 0 down pg/stream-0 1 down pg/stream-1 2 down pg/stream-2 3 down pg/stream-3 4 down
Step 4: Change blacklist behavior
If vpp seems not to have discovered an interface that you expected to see, it's likely that the data-plane blacklisted it. The VPP process blacklists interfaces whose corresponding Linux interfaces are up, and/or have ip4/6 addresses configured on them.
You can change this blacklist behavior. For example, if you want vpp to take over an interface ethX which has been blacklisted, execute the following commands.
To remove ethX from the running VPP blacklist:
# ifconfig ethX down # ip addr flush dev ethX # stop vpp # start vpp
Test The VPP Package
It's a good idea to perform a few basic smoke-tests. In other words, it's a good idea to perform some basic tasks to make sure that vpp is running as expected.
Step 1: Configure and enable an interface
Use the set int command to configure an interface. For this test, configure an ipv4 address on an interface, and enable the interface. Use the sudo command in combination with the vpp engine's vppctl command to execute the command with root privilege:
# sudo vppctl set int ip address GigabitEthernet2/2/0 192.168.1.1/24 # sudo vppctl set int state GigabitEthernet2/2/0 up
You can also use the vppctl command in combination with native Linux commands such as grep:
# sudo vppctl show int | grep state
Use the ip probe command to probe an adjacent system, by sending an ipv4 icmp echo-request:
# sudo vppctl ip probe 192.168.1.2 GigabitEthernet2/2/0 Resolved 192.168.1.2
Use the sh ip command to check the ARP and ipv4 FIB tables:
# sudo vppctl sh ip arp Time FIB IP4 Stat Ethernet Interface 2782.7392 0 192.168.1.2 00:50:56:b7:05:bb GigabitEthernet2/2/0 # sudo vppctl sh ip fib Table 0, fib_index 0, flow hash: src dst sport dport proto Destination Packets Bytes Adjacency 192.168.1.0/24 0 0 weight 1, index 5 arp GigabitEthernet2/2/0 192.168.1.1/24 192.168.1.1/32 0 0 weight 1, index 4 local 192.168.1.1/24 192.168.1.2/32 0 0 weight 1, index 3 GigabitEthernet2/2/0 IP4: 00:50:56:b7:05:bc -> 00:50:56:b7:05:bb
Step 2: Check the error counters
After pinging the vpp engine from 192.168.1.2, use the show error command to check the error counters.
In this case, all of the counters represent normal events:
# sudo vppctl show error Count Node Reason 1 ip4-arp ARP requests sent 9810 ip4-icmp-input echo replies sent 2 arp-input ARP replies received
Step 3: Reset the statistics
Use the clear run command to reset the per-node runtime statistics:
# sudo vppctl clear run
Step 4: Check for new statistics
Send a small number of ipv4 icmp echo replies from the adjacent Linux system. Note that the vpp data plane is capable of answering several MPPS worth of ipv4 icmp echo replies; as the vector size increases, the clocks/pkt statistics will improve drastically.
Use the show run command to see the new statistics.
# sudo vppctl show run Time 18.1, average vectors/node 1.00, last 128 main loops 0.00 per node 0.00 vector rates in 2.2068e-1, out 2.2068e-1, drop 0.0000e0, punt 0.0000e0 Name State Calls Vectors Suspends Clocks Vectors/Call GigabitEthernet2/2/0-output active 4 4 0 1.71e3 1.00 GigabitEthernet2/2/0-tx active 4 4 0 7.49e3 1.00 api-rx-from-ring any wait 0 0 1 9.90e3 0.00 cnat-db-scanner any wait 0 0 1813 1.17e3 0.00 dpdk-input polling 60666120 4 0 4.04e9 0.00 dpdk-process any wait 0 0 4 1.29e7 0.00 ethernet-input active 4 4 0 5.51e3 1.00 gmon-process time wait 0 0 3 5.59e3 0.00 ip4-icmp-echo-request active 4 4 0 1.85e3 1.00 ip4-icmp-input active 4 4 0 1.51e3 1.00 ip4-input active 4 4 0 3.49e3 1.00 ip4-local active 4 4 0 3.23e3 1.00 ip4-lookup active 4 4 0 4.49e3 1.00 ip4-rewrite-local active 4 4 0 3.72e3 1.00 ip6-icmp-neighbor-discovery-ev any wait 0 0 18 6.74e3 0.00 unix-cli-127.0.0.1:48387 active 0 0 9 7.15e4 0.00 unix-epoll-input polling 60666120 0 0 5.15e2 0.00 vpe-oam-process any wait 0 0 9 6.45e3 0.00
Step 5: Start a packet trace
Use the trace add command to start a packet-tracer capture:
# sudo vppctl trace add dpdk-input 10
Step 6: Verify test packets
Ping 192.168.1.1 from 192.168.1.2, AKA send ipv4 icmp echo request packets. If the ping succeeds, you should be all set.
Use the show trace command to display the packet trace.
To show trace information:
# sudo vppctl show trace
The packet trace will look something like this:
------------------- Start of thread 0 vpp_main ------------------- Packet 1 01:10:14:046893: dpdk-input GigabitEthernet2/2/0 rx queue 0 buffer 0x631e: current data 0, length 102, free-list 0, totlen-nifb 0, trace 0x0 PKT MBUF: port 0, nb_segs 1, pkt_len 102 buf_len 2304, data_len 102, ol_flags 0x0, packet_type 0x0 IP4: 00:50:56:b7:05:bb -> 00:50:56:b7:05:bc ICMP: 192.168.1.2 -> 192.168.1.1 tos 0x00, ttl 64, length 84, checksum 0x7c1f fragment id 0x3b36, flags DONT_FRAGMENT ICMP echo_request checksum 0x7cd1 01:10:14:046989: ethernet-input IP4: 00:50:56:b7:05:bb -> 00:50:56:b7:05:bc 01:10:14:047010: ip4-input ICMP: 192.168.1.2 -> 192.168.1.1 tos 0x00, ttl 64, length 84, checksum 0x7c1f fragment id 0x3b36, flags DONT_FRAGMENT ICMP echo_request checksum 0x7cd1 01:10:14:047013: ip4-local fib: 0 adjacency: local 192.168.1.1/24 flow hash: 0x00000000 01:10:14:047017: ip4-icmp-input ICMP: 192.168.1.2 -> 192.168.1.1 tos 0x00, ttl 64, length 84, checksum 0x7c1f fragment id 0x3b36, flags DONT_FRAGMENT ICMP echo_request checksum 0x7cd1 01:10:14:047019: ip4-icmp-echo-request ICMP: 192.168.1.2 -> 192.168.1.1 tos 0x00, ttl 64, length 84, checksum 0x7c1f fragment id 0x3b36, flags DONT_FRAGMENT ICMP echo_request checksum 0x7cd1 01:10:14:047019: ip4-rewrite-local fib: 0 adjacency: GigabitEthernet2/2/0 IP4: 00:50:56:b7:05:bc -> 00:50:56:b7:05:bb flow hash: 0x00000000 IP4: 00:50:56:b7:05:bc -> 00:50:56:b7:05:bb ICMP: 192.168.1.1 -> 192.168.1.2 tos 0x00, ttl 64, length 84, checksum 0x6383 fragment id 0x53d2, flags DONT_FRAGMENT ICMP echo_reply checksum 0x84d1 01:10:14:047021: GigabitEthernet2/2/0-output GigabitEthernet2/2/0 IP4: 00:50:56:b7:05:bc -> 00:50:56:b7:05:bb ICMP: 192.168.1.1 -> 192.168.1.2 tos 0x00, ttl 64, length 84, checksum 0x6383 fragment id 0x53d2, flags DONT_FRAGMENT ICMP echo_reply checksum 0x84d1 01:10:14:047022: GigabitEthernet2/2/0-tx GigabitEthernet2/2/0 tx queue 0 buffer 0x631e: current data 0, length 102, free-list 0, totlen-nifb 0, trace 0x0 IP4: 00:50:56:b7:05:bc -> 00:50:56:b7:05:bb ICMP: 192.168.1.1 -> 192.168.1.2 tos 0x00, ttl 64, length 84, checksum 0x6383 fragment id 0x53d2, flags DONT_FRAGMENT ICMP echo_reply checksum 0x84d1 Packet 2 01:10:15:044487: dpdk-input GigabitEthernet2/2/0 rx queue 0 buffer 0x6345: current data 0, length 102, free-list 0, totlen-nifb 0, trace 0x1 PKT MBUF: port 0, nb_segs 1, pkt_len 102 buf_len 2304, data_len 102, ol_flags 0x0, packet_type 0x0 IP4: 00:50:56:b7:05:bb -> 00:50:56:b7:05:bc ICMP: 192.168.1.2 -> 192.168.1.1 tos 0x00, ttl 64, length 84, checksum 0x7bc7 fragment id 0x3b8e, flags DONT_FRAGMENT ICMP echo_request checksum 0x64d4 01:10:15:044496: ethernet-input IP4: 00:50:56:b7:05:bb -> 00:50:56:b7:05:bc 01:10:15:044500: ip4-input ICMP: 192.168.1.2 -> 192.168.1.1 tos 0x00, ttl 64, length 84, checksum 0x7bc7 fragment id 0x3b8e, flags DONT_FRAGMENT ICMP echo_request checksum 0x64d4 01:10:15:044504: ip4-local fib: 0 adjacency: local 192.168.1.1/24 flow hash: 0x00000000 01:10:15:044506: ip4-icmp-input ICMP: 192.168.1.2 -> 192.168.1.1 tos 0x00, ttl 64, length 84, checksum 0x7bc7 fragment id 0x3b8e, flags DONT_FRAGMENT ICMP echo_request checksum 0x64d4 01:10:15:044507: ip4-icmp-echo-request ICMP: 192.168.1.2 -> 192.168.1.1 tos 0x00, ttl 64, length 84, checksum 0x7bc7 fragment id 0x3b8e, flags DONT_FRAGMENT ICMP echo_request checksum 0x64d4 01:10:15:044507: ip4-rewrite-local fib: 0 adjacency: GigabitEthernet2/2/0 IP4: 00:50:56:b7:05:bc -> 00:50:56:b7:05:bb flow hash: 0x00000000 IP4: 00:50:56:b7:05:bc -> 00:50:56:b7:05:bb ICMP: 192.168.1.1 -> 192.168.1.2 tos 0x00, ttl 64, length 84, checksum 0x82be fragment id 0x3497, flags DONT_FRAGMENT ICMP echo_reply checksum 0x6cd4 01:10:15:044509: GigabitEthernet2/2/0-output GigabitEthernet2/2/0 IP4: 00:50:56:b7:05:bc -> 00:50:56:b7:05:bb ICMP: 192.168.1.1 -> 192.168.1.2 tos 0x00, ttl 64, length 84, checksum 0x82be fragment id 0x3497, flags DONT_FRAGMENT ICMP echo_reply checksum 0x6cd4 01:10:15:044510: GigabitEthernet2/2/0-tx GigabitEthernet2/2/0 tx queue 0 buffer 0x6345: current data 0, length 102, free-list 0, totlen-nifb 0, trace 0x1 IP4: 00:50:56:b7:05:bc -> 00:50:56:b7:05:bb ICMP: 192.168.1.1 -> 192.168.1.2 tos 0x00, ttl 64, length 84, checksum 0x82be fragment id 0x3497, flags DONT_FRAGMENT ICMP echo_reply checksum 0x6cd4
If you see packet information from ICMP: 192.168.1.2, then you know that vpp is successfully processing packets.